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TURBULENCE EFFECTS ON REFLECTED OPTICAL PATTERNS 
(ATMOSPHERE AND STRUCTURE)

ABSTRACT

The vacuum irradiance pattern produced by an optical beam illuminating a 
distant receiving plane is distorted by atmospheric turbulence. The distortion 
manifests itself as a wander and “breathing” of the beam spot. Reflected opti
cal patterns exhibit the same type of distortion but to a degree that depends on 
the type of reflector. We describe the reflected irradiance pattern in terms of 
several length scales of interest. Numerically derived optical patterns for a 
spherical wave reflected from a plane retroreflector are also presented. Vari
ous reflector diameters and turbulence strengths are considered. These results 
indicate that the small-scale structure in the reflected optical pattern is no 
longer discernible when gQ < Dr, where p0 is the spherical wave coherence 
length and Dr is the reflector diameter.

1. INTRODUCTION

The near- and far-field vacuum diffraction patterns of any optical source operating 
in the atmosphere will be distorted by turbulence. It is difficult to describe the instantane
ous distortion of the patterns; however, a qualitative discussion of the different types of 
distortion, when the distortions occur, and over what time scales is relatively straightfor
ward. The length scales that are important in this problem are the Fresnel zone /XL, 
where X is the source wavelength and L is the propagation pathlength; the spherical wave 
coherence length p„ = (0.545 k2 L C2)'3/5, where k = 2n/X and C2 is the refractive index 
stiuctuie paiameter (Fante, 1975); and the diameter D of the source or reflector aperture. 
We assume that the optical beam is very nearly collimated so that it also has a diameter 
of D. The one important time scale of interest is then r = D/V, where V is the wind speed 
transverse to the propagation path. In all our discussions we assume that the atmospheric 
turbulence is homogeneous and isotropic, and that it is adequately described by the 
Kolmogorov spectrum (Tatarskii, 1971)

(I>„(A) = 0.033 C2 A"11/3 , (1)

where A is the spatial wavenumber of the refractive irregularities. We also assume that all 
the length scales of interest are smaller than the turbulence outer scale L„ and the larger 
than the inner scale We first discuss direct patterns and then turn our attention to 
reflected patterns.

2. DIRECT PATTERN

Consider the instantaneous spot produced on some distant receiving plane by a laser 
source of diameter D. By instantaneous we mean the pattern that would be recorded on a
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Figure 1. The time history of the wander of a laser beam spot in a receiving 
plane for propagation through a turbulent medium (from Fante, 1975).

photographic plate using an exposure time much shorter than r. Eddies larger than the 
beamwidth tend to deflect the spot from its on-axis position, while those smaller than the 
beamwidth cause the spot to “breathe,” that is, expand and contract as a function of time. 
This latter effect tends to distort or warp the small-scale structure within the pattern. If we 
could watch the behavior of the spot it would look something like that shown in Fig. 1. 
The spot would be continuously deflected over time intervals of order At = t as different 
eddies were advected through the beam. The details and small-scale structure within the 
spot would also change over the same time scale. These are some of the questions we 
want to answer: How distorted is the instantaneous spot? What is the relative amount of 
spot wander to spot spreading? Can we quantify the degree of distortion?

Let us first consider what happens in very weak turbulence, that is when 
Qo » D » (XL In this limit, turbulence has essentially no effect and the observed optical 
pattern is the undistorted vacuum diffraction pattern. As the turbulence strength in
creases, decreases and the instantaneous irradiance pattern wanders more and more in 
the receiving plane. Provided p0 > D » v'IZ the pattern, although it wanders, is still un
distorted from its vacuum value. As the turbulence strength continues to increase so that 
D > g0 » vi\L the pattern wanders less and begins to breathe, thereby distorting the 
details in the diffraction pattern. When D » £>0 » fXL, the pattern no longer wanders 
appreciably but is increasingly distorted.

Up to this point in our discussion amplitude fluctuations or scintillations have been 
neglected. As q0 decreases relative to fXL these become more important. In the limit of 
very strong turbulence, when D » 'IlL » 0o, the optical pattern will have deep intensity
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fluctuations across it. In this regime the pattern tends to break up into multiple patches. 
There is no discernable wander of the instantaneous pattern, and it is severely distorted 
from its vacuum value.

These different regimes are discussed in detail by Fante (1975), and some examples 
of numerically generated turbulence degraded irradiance patterns are presented by 
Lutomirski and Yura (1971).

The literature describing beam wander and breathing is always couched in terms of 
short- and long-term effects. It may be worthwhile at this point to discuss the differences 
between the tw?o. The effects of turbulence, because they are of an inherently random 
nature, need to be quantified in terms of ensemble averages. Two parameters, for exam
ple, that can be used to quantify beam distortion are the short- and long-term spot size. 
The short-term spot size is the average (ensemble) diameter of the smaller (instantane
ous) spot shown in Fig. 1. The ergodic hypothesis says that this can be obtained from a 
time series of the instantaneous spot diameter as the spot moves around in the receiving 
plane. This short-term spot size represents the effect of eddies that are smaller than the 
beam diameter. The long-term spot size is the diameter of the larger circle in Fig. 1. It is 
the average (ensemble) beam diameter including beam wander. If we invoke the ergodic 
hypothesis, it is the diameter of the spot that would be recorded on a photographic plate 
exposed for a time t » r to the optical pattern. It includes the effect of both large and 
small eddies. This discussion can easily be extended to include the short- and long-term 
optical patterns. The short-term optical pattern would be an average of all the instantane
ous patterns observed after the displacement has been removed. It would therefore be a 
smoothed version of the instantaneous pattern. The long-term pattern would be that re
corded on a photographic plate for a long (» r) exposure time.

3. REFLECTED PATTERN

The general concepts presented in the previous section also apply for reflected 
beams. The exact details, however, depend on the type of reflector and correlated nature 
of the turbulence on the outgoing and return path.

The specific case we consider is that of a retroreflector of diameter Dr. The one 
obvious modification to the previous discussion is that for this case the spot will tend to 
wander less than for a direct beam provided the retroreflector is large enough. This beam 
wander suppression is due to the tilt-compensation effect of the retroreflector (Lutomirski 
and Warren, 1975).

To quantify the effect of turbulence on the reflected optical pattern, we numerically 
evaluate the long-term reflected irradiance pattern for different turbulence strengths. Al
though the long-term pattern does not really give us any information about the instantane
ous distortion, it should give a rough idea of the impact of turbulence on the reflected 
pattern.
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3.1 Theory

The incident spherical wave field U, at a transverse point gr' in a reflecting plane a 
distance L from the source can be expressed as

Jk[Ltg/2/(2L)] _
U,(Qr') = Us-----------------ewe/) (2)

where l)s is the complex, spherical-wave, vacuum source amplitude and k = 2ntX. The 
parameter y>(gs, g/) is the complex phase perturbation (Tatarskii, 1971) suffered by a 
spherical wave emitted from a transverse point gs in the source plane as observed at a 
transverse point g/ in the reflecting plane. The arrow above ip identifies the direction of 
propagation; in this case from gs to g/. The reflected field U at a transverse point g back 
in the source plane is given by the extended Huygens-Fresnel integral (Lutomirski and 
Yura, 1971),

iJ(q) =jL-eiklL+e2/(.2L)] ((2greikQ2r/(2L)e-ikQl-Q/L

x etcj'-eif d2e,'R(e„ e/MGr'). (3)

| 

where gr is a transverse vector in the reflecting plane and R(gr,g/) is the reflection 
coefficient. R(gr,g/) links the incident field at a transverse point gr' on the reflector to the 
reflected field at a transverse point gr on the reflector. For a retroreflector R(gr,g,') = 
Mg, ) d(gr + o,.'), where T(p/) is the complex retroreflector reflectance and d is the 
Dirac delta function. Substituting this expression and Eq. (2) into Eq. (3), we have

U(g) = i - gift[2L+e2/(.2L)] j d2grA(g,)e'kUr/Le ikur'Q/L

X eV>(U,-Qr)Jj’(<Jr,Q) (4)

The ensemble or long-term mean irradiance pattern is then given by

(I(Q)) = (|^({?)|2)

= ,s \ d2& \ ik (gj-Qr'2 )/Lp-ikg• (Q,-Q/)/L

X (gV;(° .-<?/-) -I-V'* (0 ,-Qr')+y’(g, 6r)+V* ((?, g/) \ (5)
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where ls = \US\2, the asterisk denotes a couple conjugate, and we have used reciprocity to 
set ij>(gn g) = tj’ig.g,) = *J’(g,gr) (Clifford and Wandzura, 1981).

The quantity in the angle brackets (• • •) can be readily evaluated if we assume the 
»/’ terms are jointly Gaussian random variables, if in addition we assume that the phase 
fluctuations dominate any effects produced by amplitude fluctuations, we have (Lee et al., 
1977)

(• • •) = expj- j |D(0, gr - gr') - D(g, 2gr) + 2D(g, gr + g/) - D(g, 2g/) + D(0, g/ - gr) ||,

(6)

where D(x,y) is the two-source spherical-wave structure function. For homogeneous iso
tropic turbulence and the Kolmogorov refractive index spectrum defined in Eq. (1), D(x,y) 
can be expressed as

i
D(x,y) = 2.9U2L C2 J dit\ux + (1 - «)y|5/3, (7)

o

where x and y are the separation vectors between the two source and receiver points 
respectively. Here the integration is over the normalized path position u = z/L, where z is 
the distance from the source. From Eq. (7) it is clear that D(x,y) = D(-x,-y) so that 
D(0. g/ - gr) in Eq. (6) can be written as Z)(0, gr-Qr') = 2(\gr-gr'\/gV))5^. Equation (6) 
can then be expressed as

(• • •) = expj- 2^-"" j 7 | expjy lD(q, 2gr) + D(g, 2gr') - 2D(g, g, + Qr') IJ • (8)

We note that if the second exponential in Eq. (8) is set equal to unity, the result is what 
would have been obtained had we assumed that the outgoing and reflected waves propa
gated through independent regions of turbulence. The second exponential therefore de
scribes the effect of the correlated nature of the turbulence on the outward and return 
paths.

Equation (8) in its present form is relatively complicated because of the dependence 
of the structure functions in the second exponential on g, gr, and gr'. What we want to do 
then is to simplify the second exponential. To this end we consider two limits. The first is 
D « p(). In this limit the dominant effect of the atmosphere is to randomly tilt the propa
gating wavefront. This phenomenon is accurately described by a quadratic structure func
tion (Clifford and Wandzura, 1981; Wandzura, 1980). The quadratic approximation to the 
structure function in Eq. (7) for common source points (Jt = 0) is
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D(0,y) = 2fMY/3 « 2fMY
Vih)J VQoJ (9)

For separated source points (x ^ 0), a quadratic structure function is less straightforward 
to generate. To fabricate such a function we note that Eq. (9) is obtained from

D(0,y)-2||jJdK|(i-«)y|5/3]/e5/3} ' . (10)

To extend this expression to include two source points we need to replace (1-w)y in Eq. 
(10) by ux + (1 -u)y. This, however, still leaves us with an intractable integral. To obtain a 
tractable result we use

D(0,y) = 2W\du^-u)W\/d, (11)

L o J

which gives a result equivalent to Eq. (10). Extending this to include two source points, 
we obtain

D(x,y) * + x_y+f\
Qq J ' (12)

Using this expression in Eq. (8), we obtain

(• • •) (13)

where ^ = |^| = |p, -p,'|. The second limit we consider is q0 « D. In this limit the first 
exponential in Eq. (8) falls off rapidly to zero when ur & or', which limits the region of 
integration in Eq. (5) to ur ~ gr'. Substituting gr = gr' into the second exponential in Eq. 
(8), we have

Po « D , (14)
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which is the independent path result.

Equations (13) and (14) can now be used in Eq. (5) to obtain an expression for the 
long-term irradiance pattern. Using the change of variables E=Qr-Sr' and 2>i = 6 +d ' 
we find that ' ’

{,{i}))=/ d2&ikH/LmFd), (15a)

where

rK)ie42©li-&)'l
i+m

D « Qo ,

Qo « D ,

(15b)

describes the effects of turbulence and

= / d^Ad) +1/2)A\,j - i/2)ei2k^/1-
(15c)

describes the effect of the reflector. For a circular reflector with amplitude transmittance

M(>r) =

1, ](),} < Dr/2 ,

0, |p,| > DJ2 ,
(16)

Eq. (15c) can be evaluated to give (Lutomirski and Yura, 1971)

F{t) = F(£) =D2 I
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for t; < D, and 0 otherwise. Here £ = |£|. To simplify these results a bit we note that the 
expression for T{£) in Eq. (15) can be extended in an ad hoc manner to include arbitrary 
ratios of Z)/p0:

7\£) ~ expKiri'-'-'-ta'i (18)

which has the correct limits for large and small D relative to q0. Since F(|) depends only 
on f, the angular integration in Eq. (15c) can be performed to finally give

k2 c
m) = Is2^u J d&MkQmnmz), (19)

0

where g = |p| and J0 is the zero-order Bessel function (Gradshteyn and Ryzhik, 1980). 
We note that in terms of the transverse coordinates x and y, g = Jx2 +y2. Equations (17), 
(18), and (19) can now be used to generate the long-term reflected optical patterns for a 
retroreflector. We caution that these equations are approximations and therefore should 
only be used to estimate the effects of turbulence, and that these expressions are strictly
va|id only when p0 > JIL

3.2 Discussion

Equation (19) normalized to its on-axis value in the absence of turbulence (i.e., 
T(£) = 1) is shown plotted in Fig. 2 as a function of the transverse coordinate x normal
ized by the reflector diameter Dr. The vacuum patterns are shown together with the long- 
exposure (» r) irradiance patterns for Dr = p0 and Dr = 10 g0. Several different reflector 
diameters are considered. Clearly, the optical patterns tend to lose their fine structure 
when po <
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Figure 2. The long-term mean intensity </> normalized by its on-axis vacuum 
value /„ is plotted on a log-linear scale as a function of the transverse distance 
from the propagation axis normalized by the retroreflector diameter Dr, for fa) 
Dr = 4.47 jL/k, (b) Dr = 3.16 ,/I/k, (c) Dr = 2.24 JT/k, and (d) Dr = 0.32 Jf/k. 
Each plot has three curves, each for a different level of turbulence as described 
by a = Dr/(jo- Here L is the path length, k = 2tt/A, A is the source wavelength, p0 
= (0.545 k2L C2rys *s Ole spherical-wave lateral coherence length, and Cl is the 
refractive index structure parameter.

4. CONCLUSIONS

For typical operating conditions in the atmosphere we expect the propagation pa
rameter^ to fall primarily into one of two regimes. These are Dr»p0» /aZ or 
D, » 'lXL > Po, with the latter being the most probable. For the former regime the domi
nant effect of turbulence on the reflected optical pattern is an expansion and contraction
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or breathing of the beam spot, which tends to warp the details within the pattern. Wander 
of the beam spot is negligible. This effect occurs over a time scale on the order of Dr/V. 
When Dr»\/XL > p0 the pattern also contains deep amplitude fluctuations over spatial 
scales on the order of p0. In this regime the pattern is severely distorted and probably 
unrecognizable. In the unlikely case of very weak turbulence (p()» Dr» /XL), the re
flected spot wanders in the receiving plane but is otherwise undistorted.

In an attempt to quantify the distortion we numerically evaluated the long-term re
flected irradiance pattern for different levels of turbulence. Once again, the long-term 
pattern is what would be recorded on a photographic plate exposed to the pattern for a 
time long compared with Dr/V. Although it does not describe the instantaneous distortion 
it does give us a feeling for how strong the turbulence needs to be before the details of the 
pattern are smeared out. We find that when g0 < Dr, the details in the pattern are no 
longer clearly discernible.
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